-
Notifications
You must be signed in to change notification settings - Fork 1.4k
Closed
Description
in you tutorial
spleen_segmentation_3d
question1
val_outputs = [post_pred(i) for i in decollate_batch(val_outputs)]
val_labels = [post_label(i) for i in decollate_batch(val_labels)]Isn’t this redundant? This code decollates the data from the batch dimension and then wraps it into a list, effectively doing nothing, right? Why not directly use post_pred(val_outputs) and post_label(val_labels)? Does it mean that the AsDiscrete transform has to remove the data from the batch dimension to work?
question2
train_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
EnsureChannelFirstd(keys=["image", "label"]),
ScaleIntensityRanged(
keys=["image"],
a_min=-57,
a_max=164,
b_min=0.0,
b_max=1.0,
clip=True,
),
CropForegroundd(keys=["image", "label"], source_key="image"),
Orientationd(keys=["image", "label"], axcodes="RAS"),
Spacingd(keys=["image", "label"], pixdim=(1.5, 1.5, 2.0), mode=("bilinear", "nearest")),
RandCropByPosNegLabeld(
keys=["image", "label"],
label_key="label",
spatial_size=(96, 96, 96),
pos=1,
neg=1,
num_samples=4,
image_key="image",
image_threshold=0,
),
# for inference
roi_size = (160, 160, 160)
sw_batch_size = 4why roi_size = (160, 160, 160)?
for training,you randomly crop the data used to a size of (96, 96, 96)? Why are you using (160, 160, 160) for inference instead?
Metadata
Metadata
Assignees
Labels
No labels