You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lectures/asset_pricing_lph.md
+13-7Lines changed: 13 additions & 7 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -21,6 +21,8 @@ kernelspec:
21
21
:depth: 2
22
22
```
23
23
24
+
## Overview
25
+
24
26
This lecture summarizes the heart of applied asset-pricing theory.
25
27
26
28
From a single equation, we'll derive
@@ -42,6 +44,8 @@ For background and basic concepts, see our lecture [orthogonal projections and
42
44
43
45
As a sequel to the material here, please see our lecture [two modifications of mean-variance portfolio theory](https://python-advanced.quantecon.org/black_litterman.html).
44
46
47
+
## Key Equation
48
+
45
49
We begin with a **key asset pricing equation**:
46
50
47
51
@@ -69,6 +73,8 @@ that end up having the same payouts must have the same price.
69
73
They also explain how the __absence of an arbitrage__ implies that the stochastic discount
70
74
factor $m \geq 0$.
71
75
76
+
## Implications of Key Equation
77
+
72
78
73
79
We combine key equation {eq}`eq:EMR1` with a remark of Lars Peter Hansen that "asset pricing theory is all about covariances".
74
80
@@ -137,7 +143,7 @@ $$ (eq:EMR3)
137
143
Equation {eq}`eq:EMR3` can be rearranged to display important parts of asset pricing theory.
138
144
139
145
140
-
**Expected return - Beta representation**
146
+
## Expected Return - Beta Representation
141
147
142
148
We can obtain the celebrated **expected-return-Beta -representation** for gross return $R^i$ simply by rearranging excess return equation {eq}`eq:EMR3` to become
143
149
@@ -217,7 +223,7 @@ An asset with an $R^i$ that is low when consumption growth is low has $\beta_i$
217
223
218
224
219
225
220
-
**Mean-Variance Frontier**
226
+
## Mean-Variance Frontier
221
227
222
228
Now we'll derive the celebrated **mean-variance frontier**.
223
229
@@ -320,7 +326,7 @@ $$ (eq:EMR7)
320
326
321
327
+++
322
328
323
-
**Empirical implementations**
329
+
## Empirical Implementations
324
330
325
331
326
332
We briefly describe empirical implementations of multi-factor generalizations of the single-factor model described above.
@@ -397,7 +403,7 @@ $$
397
403
E R^{e i}=\beta_{i, a} \lambda_{a}+\beta_{i, b} \lambda_{b}+\cdots+\alpha_{i}, i=1, \ldots, I
398
404
$$
399
405
400
-
## Exercises (Introductory)
406
+
## Exercises
401
407
402
408
Let's start with some imports.
403
409
@@ -470,7 +476,7 @@ E\left[R^f\right] &= 0.02 \\
470
476
\sigma_5 &= 0.04
471
477
\end{align*}
472
478
473
-
## Exercises (Intermediate)
479
+
**More Exercises**
474
480
475
481
Now come some even more fun parts!
476
482
@@ -501,7 +507,7 @@ Using the estimates of the parameters that you generated above, compute the impl
501
507
502
508
503
509
504
-
## Solutions (Introductory)
510
+
## Solutions
505
511
506
512
### Solution to Exercise 1
507
513
@@ -635,7 +641,7 @@ for i in range(N):
635
641
636
642
Q: How close did your estimates come to the parameters we specified?
0 commit comments