Skip to content

Commit 08f9705

Browse files
Tom's Sept 28 edits of new asset pricing lecture, with exercises included
1 parent 8562936 commit 08f9705

File tree

1 file changed

+13
-7
lines changed

1 file changed

+13
-7
lines changed

lectures/asset_pricing_lph.md

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -21,6 +21,8 @@ kernelspec:
2121
:depth: 2
2222
```
2323

24+
## Overview
25+
2426
This lecture summarizes the heart of applied asset-pricing theory.
2527

2628
From a single equation, we'll derive
@@ -42,6 +44,8 @@ For background and basic concepts, see our lecture [orthogonal projections and
4244

4345
As a sequel to the material here, please see our lecture [two modifications of mean-variance portfolio theory](https://python-advanced.quantecon.org/black_litterman.html).
4446

47+
## Key Equation
48+
4549
We begin with a **key asset pricing equation**:
4650

4751

@@ -69,6 +73,8 @@ that end up having the same payouts must have the same price.
6973
They also explain how the __absence of an arbitrage__ implies that the stochastic discount
7074
factor $m \geq 0$.
7175
76+
## Implications of Key Equation
77+
7278
7379
We combine key equation {eq}`eq:EMR1` with a remark of Lars Peter Hansen that "asset pricing theory is all about covariances".
7480
@@ -137,7 +143,7 @@ $$ (eq:EMR3)
137143
Equation {eq}`eq:EMR3` can be rearranged to display important parts of asset pricing theory.
138144
139145
140-
**Expected return - Beta representation**
146+
## Expected Return - Beta Representation
141147
142148
We can obtain the celebrated **expected-return-Beta -representation** for gross return $R^i$ simply by rearranging excess return equation {eq}`eq:EMR3` to become
143149
@@ -217,7 +223,7 @@ An asset with an $R^i$ that is low when consumption growth is low has $\beta_i$
217223
218224
219225
220-
**Mean-Variance Frontier**
226+
## Mean-Variance Frontier
221227
222228
Now we'll derive the celebrated **mean-variance frontier**.
223229
@@ -320,7 +326,7 @@ $$ (eq:EMR7)
320326
321327
+++
322328
323-
**Empirical implementations**
329+
## Empirical Implementations
324330
325331
326332
We briefly describe empirical implementations of multi-factor generalizations of the single-factor model described above.
@@ -397,7 +403,7 @@ $$
397403
E R^{e i}=\beta_{i, a} \lambda_{a}+\beta_{i, b} \lambda_{b}+\cdots+\alpha_{i}, i=1, \ldots, I
398404
$$
399405
400-
## Exercises (Introductory)
406+
## Exercises
401407
402408
Let's start with some imports.
403409
@@ -470,7 +476,7 @@ E\left[R^f\right] &= 0.02 \\
470476
\sigma_5 &= 0.04
471477
\end{align*}
472478
473-
## Exercises (Intermediate)
479+
**More Exercises**
474480
475481
Now come some even more fun parts!
476482
@@ -501,7 +507,7 @@ Using the estimates of the parameters that you generated above, compute the impl
501507
502508
503509
504-
## Solutions (Introductory)
510+
## Solutions
505511
506512
### Solution to Exercise 1
507513
@@ -635,7 +641,7 @@ for i in range(N):
635641
636642
Q: How close did your estimates come to the parameters we specified?
637643
638-
## Solutions (Intermediate)
644+
639645
640646
### Solution to Exercise 4
641647

0 commit comments

Comments
 (0)