-
-
Notifications
You must be signed in to change notification settings - Fork 27
Open
Description
cagan_adaptive.md
| Property | Value |
|---|---|
| Source | lecture-python-intro |
| Target | lecture-intro.zh-cn |
| Source Date | 2024-07-19 |
| Target Date | 2025-03-12 |
| Direction | ← Target newer |
| Status | |
| Recommendation | MANUAL REVIEW (complex changes detected) |
Summary
8 aligned, 12 issues in 4 sections
| Section | Type | Status | Issue | Links |
|---|---|---|---|---|
| §1 | Section | ✅ | - | - |
| §2 | Section | ✅ | - | - |
| §3 | Section | ✅ | - | - |
| §4 | Title | Differs | View / Action | |
| §5 | Title | Differs | View / Action | |
| §5 | Content | Differs | View / Action | |
| §5 | Code B1 | Function names | View / Action | |
| §5 | Code B2 | Code differs | View / Action | |
| §5 | Code B3 | Function names | View / Action | |
| §6 | Code B4 | Code differs | View / Action | |
| §7 | Content | Differs | View / Action | |
| §7 | Code T7 | 🔵 INSERTED | Extra | View / Action |
| §7 | Code B5 | Code differs | View / Action | |
| §7 | Code T8 | 🔵 INSERTED | Extra | View / Action |
| §7 | Code B6 | Code differs | View / Action | |
| §8 | Section | ✅ | - | - |
| §9 | Section | ✅ | - | - |
| §10 | Section | ✅ | - | - |
| §11 | Section | ✅ | - | - |
| §12 | Section | ✅ | - | - |
Code Action
| Source | Target | Status | Recommendation | Details |
|---|---|---|---|---|
| 1 | 1 | BACKPORT | View | |
| 2 | 2 | BACKPORT | View | |
| 3 | 3 | BACKPORT | View | |
| 4 | 4 | BACKPORT | View | |
| - | 7 | 🔵 INSERTED | BACKPORT | View |
| 5 | 5 | BACKPORT | View | |
| - | 8 | 🔵 INSERTED | BACKPORT | View |
| 6 | 6 | BACKPORT | View |
Recommendation: BACKPORT
Target code appears improved. Review for backport to source.
Action:
- SYNC code from source
- BACKPORT improvements to source (unanimous)
- ACCEPT current target code
- MANUAL review needed
Section Review
📅 Target is newer (2025-03-12 vs 2024-07-19) - translation may contain improvements
§4 Harvesting insights from our matrix formulation
§4 Title: Harvesting insights from our matrix formulation → 求解模型
Status:
Notes:
- Issue: "Harvesting insights from our matrix formulation" is metaphorical and exploratory, while "求解模型" (Solving the model) is more direct and procedural, losing the nuance of extracting understanding from the mathematical structure
- Fix: Consider "从矩阵表达式中获得洞见" or "矩阵公式推导及求解" to better capture the original emphasis on gaining insights through the formulation process
Action:
- SYNC (recommended)
- BACKPORT
- ACCEPT
- MANUAL
§5 Forecast errors and model computation
§5 Title: Forecast errors and model computation → 预期与实际通货膨胀的差异
Status:
Notes:
- Issue: "Forecast errors and model computation" encompasses both the conceptual issue of forecast errors and computational aspects, while "预期与实际通货膨胀的差异" (Differences between expected and actual inflation) focuses only on one aspect
- Fix: Use "预测误差与模型计算" to maintain both concepts
Action:
- SYNC
- BACKPORT
- ACCEPT
- MANUAL (recommended)
§5 Content: Forecast errors and model computation → 预期与实际通货膨胀的差异
Status:
Notes:
- Issue: Target adds extensive explanatory paragraphs (explaining adaptive expectations characteristics, contrasting with rational expectations) that are not present in the concise source text
- Fix: Remove the added interpretive paragraphs to match the source's brevity and direct transition to code
Action:
- SYNC
- BACKPORT
- ACCEPT
- MANUAL (recommended)
Code Block 1 - ⚠️ DIFFERS | Function names differ
Source:
Cagan_Adaptive = namedtuple("Cagan_Adaptive",
["α", "m0", "Eπ0", "T", "λ"])
def create_cagan_adaptive_model(α = 5, m0 = 1, Eπ0 = 0.5, T=80, λ = 0.9):
return Cagan_Adaptive(α, m0, Eπ0, T, λ)
md = create_cagan_adaptive_model()Target:
Cagan_Adaptive = namedtuple("Cagan_Adaptive",
["α", "m0", "Eπ0", "T", "λ"])
def create_cagan_model(α, m0, Eπ0, T, λ):
return Cagan_Adaptive(α, m0, Eπ0, T, λ)Code Block 2 - ⚠️ DIFFERS | Code logic differs
Source:
def solve_cagan_adaptive(model, μ_seq):
" Solve the Cagan model in finite time. "
α, m0, Eπ0, T, λ = model
A = np.eye(T+2, T+2) - λ*np.eye(T+2, T+2, k=-1)
B = np.eye(T+2, T+1, k=-1)
C = -α*np.eye(T+1, T+2) + α*np.eye(T+1, T+2, k=1)
Eπ0_seq = np.append(Eπ0, np.zeros(T+1))
# Eπ_seq is of length T+2
Eπ_seq = np.linalg.solve(A - (1-λ)*B @ C, (1-λ) * B @ μ_seq + Eπ0_seq)
# π_seq is of length T+1
π_seq = μ_seq + C @ Eπ_seq
D = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1) # D is the coefficient matrix in Equation (14.8)
m0_seq = np.append(m0, np.zeros(T))
# m_seq is of length T+2
m_seq = np.linalg.solve(D, μ_seq + m0_seq)
m_seq = np.append(m0, m_seq)
# p_seq is of length T+2
p_seq = m_seq + α * Eπ_seq
return π_seq, Eπ_seq, m_seq, p_seqTarget:
# 参数
T = 80
T1 = 60
α = 5
λ = 0.9
m0 = 1
μ0 = 0.5
μ_star = 0
md = create_cagan_model(α=α, m0=m0, Eπ0=μ0, T=T, λ=λ)Code Block 3 - ⚠️ DIFFERS | Function names differ
Source:
def solve_and_plot(model, μ_seq):
π_seq, Eπ_seq, m_seq, p_seq = solve_cagan_adaptive(model, μ_seq)
T_seq = range(model.T+2)
fig, ax = plt.subplots(5, 1, figsize=[5, 12], dpi=200)
ax[0].plot(T_seq[:-1], μ_seq)
ax[1].plot(T_seq[:-1], π_seq, label=r'$\pi_t$')
ax[1].plot(T_seq, Eπ_seq, label=r'$\pi^{*}_{t}$')
ax[2].plot(T_seq, m_seq - p_seq)
ax[3].plot(T_seq, m_seq)
ax[4].plot(T_seq, p_seq)
y_labs = [r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$']
subplot_title = [r'Money supply growth', r'Inflation', r'Real balances', r'Money supply', r'Price level']
for i in range(5):
ax[i].set_xlabel(r'$t$')
ax[i].set_ylabel(y_labs[i])
ax[i].set_title(subplot_title[i])
ax[1].legend()
plt.tight_layout()
plt.show()
return π_seq, Eπ_seq, m_seq, p_seqTarget:
def solve(model, μ_seq):
"在求解有限视界的凯根模型"
model_params = model.α, model.m0, model.Eπ0, model.T, model.λ
α, m0, Eπ0, T, λ = model_params
A = np.eye(T+2, T+2) - λ*np.eye(T+2, T+2, k=-1)
B = np.eye(T+2, T+1, k=-1)
C = -α*np.eye(T+1, T+2) + α*np.eye(T+1, T+2, k=1)
Eπ0_seq = np.append(Eπ0, np.zeros(T+1))
# Eπ_seq 的长度为 T+2
Eπ_seq = np.linalg.inv(A - (1-λ)*B @ C) @ ((1-λ) * B @ μ_seq + Eπ0_seq)
# π_seq 的长度为 T+1
π_seq = μ_seq + C @ Eπ_seq
D = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1)
m0_seq = np.append(m0, np.zeros(T))
# m_seq 的长度为 T+2
m_seq = np.linalg.inv(D) @ (μ_seq + m0_seq)
m_seq = np.append(m0, m_seq)
# p_seq 的长度为 T+2
p_seq = m_seq + α * Eπ_seq
return π_seq, Eπ_seq, m_seq, p_seqCode Block 4 - ⚠️ DIFFERS | Code logic differs
Source:
print(np.abs((md.λ - md.α*(1-md.λ))/(1 - md.α*(1-md.λ))))Target:
def solve_and_plot(model, μ_seq):
π_seq, Eπ_seq, m_seq, p_seq = solve(model, μ_seq)
T_seq = range(model.T+2)
fig, ax = plt.subplots(5, 1, figsize=[5, 12], dpi=200)
ax[0].plot(T_seq[:-1], μ_seq)
ax[1].plot(T_seq[:-1], π_seq, label=r'$\pi_t$')
ax[1].plot(T_seq, Eπ_seq, label=r'$\pi^{*}_{t}$')
ax[2].plot(T_seq, m_seq - p_seq)
ax[3].plot(T_seq, m_seq)
ax[4].plot(T_seq, p_seq)
y_labs = [r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$']
for i in range(5):
ax[i].set_xlabel(r'$t$')
ax[i].set_ylabel(y_labs[i])
ax[1].legend()
plt.tight_layout()
plt.show()
return π_seq, Eπ_seq, m_seq, p_seq§7 (Code block 2 - model creation)
§7 Content: (Code block 2 - model creation) → (Code block 2 - model creation with parameters)
Status:
Notes:
- Issue: Target version inserts additional explanatory code block defining parameters (T, T1, α, λ, m0, μ0, μ_star) and instantiating model with
md = create_cagan_model(...)before the solve functions, while source shows model creation without parameter definitions at this point - Fix: Remove the inserted parameter definition block to align with source structure where parameters appear later in the experiments section
Action:
- SYNC
- BACKPORT
- ACCEPT
- MANUAL (recommended)
Code Block T7 - 🔵 INSERTED | Extra block in target
Target:
μ_seq_1 = np.append(μ0*np.ones(T1), μ_star*np.ones(T+1-T1))
# 求解并绘图
π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1)This block exists only in target - not in source.
Code Block 5 - ⚠️ DIFFERS | Code logic differs
Source:
# Parameters for the experiment 1
T1 = 60
μ0 = 0.5
μ_star = 0
μ_seq_1 = np.append(μ0*np.ones(T1), μ_star*np.ones(md.T+1-T1))
# solve and plot
π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1)Target:
print(np.abs((λ - α*(1-λ))/(1 - α*(1-λ))))Code Block T8 - 🔵 INSERTED | Extra block in target
Target:
# 参数
ϕ = 0.9
μ_seq_2 = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(T)])
μ_seq_2 = np.append(μ_seq_2, μ_star)
# 求解并绘图
π_seq_2, Eπ_seq_2, m_seq_2, p_seq_2 = solve_and_plot(md, μ_seq_2)This block exists only in target - not in source.
Code Block 6 - ⚠️ DIFFERS | Code logic differs
Source:
# parameters
ϕ = 0.9
μ_seq_2 = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(md.T)])
μ_seq_2 = np.append(μ_seq_2, μ_star)
# solve and plot
π_seq_2, Eπ_seq_2, m_seq_2, p_seq_2 = solve_and_plot(md, μ_seq_2)Target:
print(λ - α*(1-λ))Metadata
Metadata
Assignees
Labels
No labels