Skip to content

(test) [cagan_adaptive] DRAFT report from tool-onboarding (action-translation) #677

@mmcky

Description

@mmcky

cagan_adaptive.md

Property Value
Source lecture-python-intro
Target lecture-intro.zh-cn
Source Date 2024-07-19
Target Date 2025-03-12
Direction ← Target newer
Status ⚠️ Review
Recommendation MANUAL REVIEW (complex changes detected)

Summary

8 aligned, 12 issues in 4 sections

Section Type Status Issue Links
§1 Section - -
§2 Section - -
§3 Section - -
§4 Title ⚠️ DIFFERS Differs View / Action
§5 Title ⚠️ DIFFERS Differs View / Action
§5 Content ⚠️ DIFFERS Differs View / Action
§5 Code B1 ⚠️ DIFFERS Function names View / Action
§5 Code B2 ⚠️ DIFFERS Code differs View / Action
§5 Code B3 ⚠️ DIFFERS Function names View / Action
§6 Code B4 ⚠️ DIFFERS Code differs View / Action
§7 Content ⚠️ DIFFERS Differs View / Action
§7 Code T7 🔵 INSERTED Extra View / Action
§7 Code B5 ⚠️ DIFFERS Code differs View / Action
§7 Code T8 🔵 INSERTED Extra View / Action
§7 Code B6 ⚠️ DIFFERS Code differs View / Action
§8 Section - -
§9 Section - -
§10 Section - -
§11 Section - -
§12 Section - -

Code Action

Source Target Status Recommendation Details
1 1 ⚠️ DIFFERS BACKPORT View
2 2 ⚠️ DIFFERS BACKPORT View
3 3 ⚠️ DIFFERS BACKPORT View
4 4 ⚠️ DIFFERS BACKPORT View
- 7 🔵 INSERTED BACKPORT View
5 5 ⚠️ DIFFERS BACKPORT View
- 8 🔵 INSERTED BACKPORT View
6 6 ⚠️ DIFFERS BACKPORT View

Recommendation: BACKPORT

Target code appears improved. Review for backport to source.

Action:

  • SYNC code from source
  • BACKPORT improvements to source (unanimous)
  • ACCEPT current target code
  • MANUAL review needed

Section Review

📅 Target is newer (2025-03-12 vs 2024-07-19) - translation may contain improvements

§4 Harvesting insights from our matrix formulation

§4 Title: Harvesting insights from our matrix formulation → 求解模型

Status: ⚠️ DIFFERS | Issue: Differs

Notes:

  • Issue: "Harvesting insights from our matrix formulation" is metaphorical and exploratory, while "求解模型" (Solving the model) is more direct and procedural, losing the nuance of extracting understanding from the mathematical structure
  • Fix: Consider "从矩阵表达式中获得洞见" or "矩阵公式推导及求解" to better capture the original emphasis on gaining insights through the formulation process

Action:

  • SYNC (recommended)
  • BACKPORT
  • ACCEPT
  • MANUAL

§5 Forecast errors and model computation

§5 Title: Forecast errors and model computation → 预期与实际通货膨胀的差异

Status: ⚠️ DIFFERS | Issue: Differs

Notes:

  • Issue: "Forecast errors and model computation" encompasses both the conceptual issue of forecast errors and computational aspects, while "预期与实际通货膨胀的差异" (Differences between expected and actual inflation) focuses only on one aspect
  • Fix: Use "预测误差与模型计算" to maintain both concepts

Action:

  • SYNC
  • BACKPORT
  • ACCEPT
  • MANUAL (recommended)

§5 Content: Forecast errors and model computation → 预期与实际通货膨胀的差异

Status: ⚠️ DIFFERS | Issue: Differs

Notes:

  • Issue: Target adds extensive explanatory paragraphs (explaining adaptive expectations characteristics, contrasting with rational expectations) that are not present in the concise source text
  • Fix: Remove the added interpretive paragraphs to match the source's brevity and direct transition to code

Action:

  • SYNC
  • BACKPORT
  • ACCEPT
  • MANUAL (recommended)

Code Block 1 - ⚠️ DIFFERS | Function names differ

Source:

Cagan_Adaptive = namedtuple("Cagan_Adaptive", 
                        ["α", "m0", "Eπ0", "T", "λ"])

def create_cagan_adaptive_model(α = 5, m0 = 1, Eπ0 = 0.5, T=80, λ = 0.9):
    return Cagan_Adaptive(α, m0, Eπ0, T, λ)

md = create_cagan_adaptive_model()

Target:

Cagan_Adaptive = namedtuple("Cagan_Adaptive", 
                        ["α", "m0", "Eπ0", "T", "λ"])

def create_cagan_model(α, m0, Eπ0, T, λ):
    return Cagan_Adaptive(α, m0, Eπ0, T, λ)

Code Block 2 - ⚠️ DIFFERS | Code logic differs

Source:

def solve_cagan_adaptive(model, μ_seq):
    " Solve the Cagan model in finite time. "
    α, m0, Eπ0, T, λ = model
    
    A = np.eye(T+2, T+2) - λ*np.eye(T+2, T+2, k=-1)
    B = np.eye(T+2, T+1, k=-1)
    C = -α*np.eye(T+1, T+2) + α*np.eye(T+1, T+2, k=1)
    Eπ0_seq = np.append(Eπ0, np.zeros(T+1))

    # Eπ_seq is of length T+2
    Eπ_seq = np.linalg.solve(A - (1-λ)*B @ C, (1-λ) * B @ μ_seq + Eπ0_seq)

    # π_seq is of length T+1
    π_seq = μ_seq + C @ Eπ_seq

    D = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1) # D is the coefficient matrix in Equation (14.8)
    m0_seq = np.append(m0, np.zeros(T))

    # m_seq is of length T+2
    m_seq = np.linalg.solve(D, μ_seq + m0_seq)
    m_seq = np.append(m0, m_seq)

    # p_seq is of length T+2
    p_seq = m_seq + α * Eπ_seq

    return π_seq, Eπ_seq, m_seq, p_seq

Target:

# 参数
T = 80
T1 = 60
α = 5
λ = 0.9
m0 = 1

μ0 = 0.5
μ_star = 0

md = create_cagan_model(α=α, m0=m0, Eπ0=μ0, T=T, λ=λ)

Code Block 3 - ⚠️ DIFFERS | Function names differ

Source:

def solve_and_plot(model, μ_seq):
    
    π_seq, Eπ_seq, m_seq, p_seq = solve_cagan_adaptive(model, μ_seq)
    
    T_seq = range(model.T+2)
    
    fig, ax = plt.subplots(5, 1, figsize=[5, 12], dpi=200)
    ax[0].plot(T_seq[:-1], μ_seq)
    ax[1].plot(T_seq[:-1], π_seq, label=r'$\pi_t$')
    ax[1].plot(T_seq, Eπ_seq, label=r'$\pi^{*}_{t}$')
    ax[2].plot(T_seq, m_seq - p_seq)
    ax[3].plot(T_seq, m_seq)
    ax[4].plot(T_seq, p_seq)
    
    y_labs = [r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$']
    subplot_title = [r'Money supply growth', r'Inflation', r'Real balances', r'Money supply', r'Price level']

    for i in range(5):
        ax[i].set_xlabel(r'$t$')
        ax[i].set_ylabel(y_labs[i])
        ax[i].set_title(subplot_title[i])

    ax[1].legend()
    plt.tight_layout()
    plt.show()
    
    return π_seq, Eπ_seq, m_seq, p_seq

Target:

def solve(model, μ_seq):
    "在求解有限视界的凯根模型"
    
    model_params = model.α, model.m0, model.Eπ0, model.T, model.λ
    α, m0, Eπ0, T, λ = model_params
    
    A = np.eye(T+2, T+2) - λ*np.eye(T+2, T+2, k=-1)
    B = np.eye(T+2, T+1, k=-1)
    C = -α*np.eye(T+1, T+2) + α*np.eye(T+1, T+2, k=1)
    Eπ0_seq = np.append(Eπ0, np.zeros(T+1))

    # Eπ_seq 的长度为 T+2
    Eπ_seq = np.linalg.inv(A - (1-λ)*B @ C) @ ((1-λ) * B @ μ_seq + Eπ0_seq)

    # π_seq 的长度为 T+1
    π_seq = μ_seq + C @ Eπ_seq

    D = np.eye(T+1, T+1) - np.eye(T+1, T+1, k=-1)
    m0_seq = np.append(m0, np.zeros(T))

    # m_seq 的长度为 T+2
    m_seq = np.linalg.inv(D) @ (μ_seq + m0_seq)
    m_seq = np.append(m0, m_seq)

    # p_seq 的长度为 T+2
    p_seq = m_seq + α * Eπ_seq

    return π_seq, Eπ_seq, m_seq, p_seq

Code Block 4 - ⚠️ DIFFERS | Code logic differs

Source:

print(np.abs((md.λ - md.α*(1-md.λ))/(1 - md.α*(1-md.λ))))

Target:

def solve_and_plot(model, μ_seq):
    
    π_seq, Eπ_seq, m_seq, p_seq = solve(model, μ_seq)
    
    T_seq = range(model.T+2)
    
    fig, ax = plt.subplots(5, 1, figsize=[5, 12], dpi=200)
    ax[0].plot(T_seq[:-1], μ_seq)
    ax[1].plot(T_seq[:-1], π_seq, label=r'$\pi_t$')
    ax[1].plot(T_seq, Eπ_seq, label=r'$\pi^{*}_{t}$')
    ax[2].plot(T_seq, m_seq - p_seq)
    ax[3].plot(T_seq, m_seq)
    ax[4].plot(T_seq, p_seq)
    
    y_labs = [r'$\mu$', r'$\pi$', r'$m - p$', r'$m$', r'$p$']

    for i in range(5):
        ax[i].set_xlabel(r'$t$')
        ax[i].set_ylabel(y_labs[i])

    ax[1].legend()
    plt.tight_layout()
    plt.show()
    
    return π_seq, Eπ_seq, m_seq, p_seq

§7 (Code block 2 - model creation)

§7 Content: (Code block 2 - model creation) → (Code block 2 - model creation with parameters)

Status: ⚠️ DIFFERS | Issue: Differs

Notes:

  • Issue: Target version inserts additional explanatory code block defining parameters (T, T1, α, λ, m0, μ0, μ_star) and instantiating model with md = create_cagan_model(...) before the solve functions, while source shows model creation without parameter definitions at this point
  • Fix: Remove the inserted parameter definition block to align with source structure where parameters appear later in the experiments section

Action:

  • SYNC
  • BACKPORT
  • ACCEPT
  • MANUAL (recommended)

Code Block T7 - 🔵 INSERTED | Extra block in target

Target:

μ_seq_1 = np.append(μ0*np.ones(T1), μ_star*np.ones(T+1-T1))

# 求解并绘图
π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1)

This block exists only in target - not in source.

Code Block 5 - ⚠️ DIFFERS | Code logic differs

Source:

# Parameters for the experiment 1
T1 = 60
μ0 = 0.5
μ_star = 0

μ_seq_1 = np.append(μ0*np.ones(T1), μ_star*np.ones(md.T+1-T1))

# solve and plot
π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1)

Target:

print(np.abs((λ - α*(1-λ))/(1 - α*(1-λ))))

Code Block T8 - 🔵 INSERTED | Extra block in target

Target:

# 参数
ϕ = 0.9
μ_seq_2 = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(T)])
μ_seq_2 = np.append(μ_seq_2, μ_star)


# 求解并绘图
π_seq_2, Eπ_seq_2, m_seq_2, p_seq_2 = solve_and_plot(md, μ_seq_2)

This block exists only in target - not in source.

Code Block 6 - ⚠️ DIFFERS | Code logic differs

Source:

# parameters
ϕ = 0.9
μ_seq_2 = np.array([ϕ**t * μ0 + (1-ϕ**t)*μ_star for t in range(md.T)])
μ_seq_2 = np.append(μ_seq_2, μ_star)


# solve and plot
π_seq_2, Eπ_seq_2, m_seq_2, p_seq_2 = solve_and_plot(md, μ_seq_2)

Target:

print(λ - α*(1-λ))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions