|
6 | 6 | from supervision.detection.utils.converters import ( |
7 | 7 | xcycwh_to_xyxy, |
8 | 8 | xywh_to_xyxy, |
| 9 | + xyxy_to_mask, |
9 | 10 | xyxy_to_xcycarh, |
10 | 11 | xyxy_to_xywh, |
11 | 12 | ) |
@@ -129,3 +130,174 @@ def test_xyxy_to_xcycarh(xyxy: np.ndarray, expected_result: np.ndarray) -> None: |
129 | 130 | def test_xcycwh_to_xyxy(xcycwh: np.ndarray, expected_result: np.ndarray) -> None: |
130 | 131 | result = xcycwh_to_xyxy(xcycwh) |
131 | 132 | np.testing.assert_array_equal(result, expected_result) |
| 133 | + |
| 134 | + |
| 135 | +@pytest.mark.parametrize( |
| 136 | + "boxes,resolution_wh,expected", |
| 137 | + [ |
| 138 | + # 0) Empty input |
| 139 | + ( |
| 140 | + np.array([], dtype=float).reshape(0, 4), |
| 141 | + (5, 4), |
| 142 | + np.array([], dtype=bool).reshape(0, 4, 5), |
| 143 | + ), |
| 144 | + # 1) Single pixel box |
| 145 | + ( |
| 146 | + np.array([[2, 1, 2, 1]], dtype=float), |
| 147 | + (5, 4), |
| 148 | + np.array( |
| 149 | + [ |
| 150 | + [ |
| 151 | + [False, False, False, False, False], |
| 152 | + [False, False, True, False, False], |
| 153 | + [False, False, False, False, False], |
| 154 | + [False, False, False, False, False], |
| 155 | + ] |
| 156 | + ], |
| 157 | + dtype=bool, |
| 158 | + ), |
| 159 | + ), |
| 160 | + # 2) Horizontal line, inclusive bounds |
| 161 | + ( |
| 162 | + np.array([[1, 2, 3, 2]], dtype=float), |
| 163 | + (5, 4), |
| 164 | + np.array( |
| 165 | + [ |
| 166 | + [ |
| 167 | + [False, False, False, False, False], |
| 168 | + [False, False, False, False, False], |
| 169 | + [False, True, True, True, False], |
| 170 | + [False, False, False, False, False], |
| 171 | + ] |
| 172 | + ], |
| 173 | + dtype=bool, |
| 174 | + ), |
| 175 | + ), |
| 176 | + # 3) Vertical line, inclusive bounds |
| 177 | + ( |
| 178 | + np.array([[3, 0, 3, 2]], dtype=float), |
| 179 | + (5, 4), |
| 180 | + np.array( |
| 181 | + [ |
| 182 | + [ |
| 183 | + [False, False, False, True, False], |
| 184 | + [False, False, False, True, False], |
| 185 | + [False, False, False, True, False], |
| 186 | + [False, False, False, False, False], |
| 187 | + ] |
| 188 | + ], |
| 189 | + dtype=bool, |
| 190 | + ), |
| 191 | + ), |
| 192 | + # 4) Proper rectangle fill |
| 193 | + ( |
| 194 | + np.array([[1, 1, 3, 2]], dtype=float), |
| 195 | + (5, 4), |
| 196 | + np.array( |
| 197 | + [ |
| 198 | + [ |
| 199 | + [False, False, False, False, False], |
| 200 | + [False, True, True, True, False], |
| 201 | + [False, True, True, True, False], |
| 202 | + [False, False, False, False, False], |
| 203 | + ] |
| 204 | + ], |
| 205 | + dtype=bool, |
| 206 | + ), |
| 207 | + ), |
| 208 | + # 5) Negative coordinates clipped to [0, 0] |
| 209 | + ( |
| 210 | + np.array([[-2, -1, 1, 1]], dtype=float), |
| 211 | + (5, 4), |
| 212 | + np.array( |
| 213 | + [ |
| 214 | + [ |
| 215 | + [True, True, False, False, False], |
| 216 | + [True, True, False, False, False], |
| 217 | + [False, False, False, False, False], |
| 218 | + [False, False, False, False, False], |
| 219 | + ] |
| 220 | + ], |
| 221 | + dtype=bool, |
| 222 | + ), |
| 223 | + ), |
| 224 | + # 6) Overflow coordinates clipped to width-1 and height-1 |
| 225 | + ( |
| 226 | + np.array([[3, 2, 10, 10]], dtype=float), |
| 227 | + (5, 4), |
| 228 | + np.array( |
| 229 | + [ |
| 230 | + [ |
| 231 | + [False, False, False, False, False], |
| 232 | + [False, False, False, False, False], |
| 233 | + [False, False, False, True, True], |
| 234 | + [False, False, False, True, True], |
| 235 | + ] |
| 236 | + ], |
| 237 | + dtype=bool, |
| 238 | + ), |
| 239 | + ), |
| 240 | + # 7) Invalid box where max < min after ints, mask stays empty |
| 241 | + ( |
| 242 | + np.array([[3, 2, 1, 4]], dtype=float), |
| 243 | + (5, 4), |
| 244 | + np.array( |
| 245 | + [ |
| 246 | + [ |
| 247 | + [False, False, False, False, False], |
| 248 | + [False, False, False, False, False], |
| 249 | + [False, False, False, False, False], |
| 250 | + [False, False, False, False, False], |
| 251 | + ] |
| 252 | + ], |
| 253 | + dtype=bool, |
| 254 | + ), |
| 255 | + ), |
| 256 | + # 8) Fractional coordinates are floored by int conversion |
| 257 | + # (0.2,0.2)-(2.8,1.9) -> (0,0)-(2,1) |
| 258 | + ( |
| 259 | + np.array([[0.2, 0.2, 2.8, 1.9]], dtype=float), |
| 260 | + (5, 4), |
| 261 | + np.array( |
| 262 | + [ |
| 263 | + [ |
| 264 | + [True, True, True, False, False], |
| 265 | + [True, True, True, False, False], |
| 266 | + [False, False, False, False, False], |
| 267 | + [False, False, False, False, False], |
| 268 | + ] |
| 269 | + ], |
| 270 | + dtype=bool, |
| 271 | + ), |
| 272 | + ), |
| 273 | + # 9) Multiple boxes, separate masks |
| 274 | + ( |
| 275 | + np.array([[0, 0, 1, 0], [2, 1, 4, 3]], dtype=float), |
| 276 | + (5, 4), |
| 277 | + np.array( |
| 278 | + [ |
| 279 | + # Box 0: row 0, cols 0..1 |
| 280 | + [ |
| 281 | + [True, True, False, False, False], |
| 282 | + [False, False, False, False, False], |
| 283 | + [False, False, False, False, False], |
| 284 | + [False, False, False, False, False], |
| 285 | + ], |
| 286 | + # Box 1: rows 1..3, cols 2..4 |
| 287 | + [ |
| 288 | + [False, False, False, False, False], |
| 289 | + [False, False, True, True, True], |
| 290 | + [False, False, True, True, True], |
| 291 | + [False, False, True, True, True], |
| 292 | + ], |
| 293 | + ], |
| 294 | + dtype=bool, |
| 295 | + ), |
| 296 | + ), |
| 297 | + ], |
| 298 | +) |
| 299 | +def test_xyxy_to_mask(boxes: np.ndarray, resolution_wh, expected: np.ndarray) -> None: |
| 300 | + result = xyxy_to_mask(boxes, resolution_wh) |
| 301 | + assert result.dtype == np.bool_ |
| 302 | + assert result.shape == expected.shape |
| 303 | + np.testing.assert_array_equal(result, expected) |
0 commit comments