by Lyra
A reusable Value-at-Risk (VaR) toolkit built for financial engineers and analysts.
The notebook implements Parametric, Historical Simulation, and Monte Carlo VaR models,
along with Expected Shortfall (ES) and basic backtesting, using yfinance as the default data source.
It is designed for real-world research, lightweight, and fully reproducible.
这是一个可复用的 VaR 分析工具包,为金融工程师与风险分析师提供便利。
运用Notebook 实现 参数法、历史模拟法、 以及 蒙特卡洛法 三种 VaR 模型, 同时支持 期望损失 与 回测。
项目默认数据源为 yfinance,也支持 TuShare(需 Token) 与 本地 CSV 文件,
结构清晰、轻量化,可用于真实金融场景下的风险研究、教学与量化建模。
-
Modular design — change only symbol or date window to reuse.
-
Default: yfinance, optional TuShare or CSV fallback.
-
Three VaR models — Parametric, Historical Simulation, Monte Carlo.
-
Expected Shortfall (ES) calculation and annualized metrics.
-
Backtesting — 95% exceedance frequency by year.
-
Auto-export — results →
outputs/summary.csv, figures →figures/. -
Practical tone — clean codebase, built for portfolio use.
-
模块化:只用修改股票代码或时间区间,就可以复用。
-
默认数据源 yfinance:可选 TuShare 或 CSV。
-
三种 VaR 模型:参数法、历史模拟法、蒙特卡洛法。
-
支持 ES 指标:用来衡量极端风险下的预期损失。
-
回测功能:展示 95% 置信区间下的年度超越次数与比例。
-
导出结果并存储:分析数据保存至
outputs/summary.csv,图像保存至figures/。 -
实战取向:代码比较简洁、适合用于项目作品集或投研分析展示。
- Clone this repository or download the notebook.
- Open
VaR_toolkit_yf.ipynbin Jupyter / VS Code. - In section 0. Parameters, edit:
SYMBOL = "600036.SS" # or AAPL, 0700.HK, etc. START = "2018-01-01" END = "2025-01-01" DATA_SOURCE = "yfinance" # or "tushare" / "csv"
