Skip to content

KrishTalwar03/Data-Science-CES-2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Iris Classifier Package

A comprehensive machine learning package for classifying iris flowers by species using the classic Iris dataset.

Overview

This package provides a complete workflow for iris flower classification using a Decision Tree model. It includes data loading, feature processing, model training, evaluation, and prediction capabilities.

Features

  • Data Loading: Load and preprocess the Iris dataset
  • Feature Processing: Scale features and apply PCA dimensionality reduction
  • Model Training: Train a Decision Tree classifier with cross-validation
  • Model Evaluation: Evaluate model performance with accuracy, confusion matrix, and classification report
  • Visualization: Generate PCA plots, confusion matrices, and decision tree visualizations
  • Model Storage: Save and load trained models and preprocessors
  • Prediction: Predict iris species based on flower measurements

Installation

# Clone the repository
git clone https://github.com/KrishTalwar03/data-sci-Ces-2.git
cd data-sci-Ces-2

# Install the package and dependencies
pip install -e .

Usage

Basic Usage

python -m src.main

Making Predictions

# Predict the species for a new flower
species = classifier.predict_iris_species(
    sepal_length=5.1, 
    sepal_width=3.5, 
    petal_length=1.4, 
    petal_width=0.2
)
print(f"Predicted species: {species}")

Project Structure

data-sci-Ces-2/
├── src/
│   ├── __init__.py
│   ├── classifier.py       # Main classifier class
│   ├── data_loading.py     # Data loading utilities
│   ├── feature_proc.py     # Feature processing
│   ├── logger.py           # Colored logging setup
│   ├── model_eval.py       # Model evaluation tools
│   ├── model_storage.py    # Model saving/loading
│   └── model_train.py      # Model training utilities
├── README.md
└── setup.py

Requirements

  • Python 3.6+
  • pandas
  • scikit-learn
  • matplotlib
  • seaborn
  • numpy
  • colorlog
  • joblib

License

This project is licensed under the MIT License - see the LICENSE file for details.

Authors

@Harsh-Bhatia7 - [email protected] @KrishTalwar03 - [email protected]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages