└── tasks
├── automl-classifier
│ ├── Experiment.ipynb <- Scripts to train models
│ └── Deployment.ipynb <- Scripts to make predictions
├── automl-regressor
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── logistic-regression
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── linear-regression
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── svc
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── svr
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── mlp-classifier
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── mlp-regressor
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── random-forest-classifier
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── random-forest-regressor
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── descriptive-analysis
│ └── Experiment.ipynb
├── feature-tools
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── filter-selection
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── grouping-categorical-features
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── imputer
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── isolation-forest-clustering
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── kmeans-clustering
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── normalizer
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── pre-selection
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── rfe-selector
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── robust-scaler
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── simulated-annealing
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
├── transformation-graph
│ ├── Experiment.ipynb
│ └── Deployment.ipynb
└── variance-threshold
├── Experiment.ipynb
└── Deployment.ipynb
Install the testing requirements:
apt-get -y install tesseract-ocr tesseract-ocr-por tesseract-ocr-eng
pip install -r requirements.txt
pip install torch==1.5.1+cpu torchvision==0.6.1+cpu -f https://download.pytorch.org/whl/torch_stable.html
pip install transformers==3.0.2Export these environment variables:
export MINIO_ENDPOINT=localhost:9000
export MINIO_ACCESS_KEY=minio
export MINIO_SECRET_KEY=minio123Start MinIO and Datasets API:
docker network create tasksdocker run -d -p 9000:9000 \
--name minio \
-e "MINIO_ACCESS_KEY=$MINIO_ACCESS_KEY" \
-e "MINIO_SECRET_KEY=$MINIO_SECRET_KEY" \
--network tasks \
minio/minio:RELEASE.2018-02-09T22-40-05Z server /datadocker run -d -p 8080:8080 \
--name datasets \
-e "MINIO_ENDPOINT=minio:9000" \
-e "MINIO_ACCESS_KEY=$MINIO_ACCESS_KEY" \
-e "MINIO_SECRET_KEY=$MINIO_SECRET_KEY" \
--network tasks \
platiagro/datasets:0.2.0Use the following command to run all tests:
pytest