🔥 Deep learning for Ruby, powered by LibTorch
Check out:
- TorchVision for computer vision tasks
- TorchText for text and NLP tasks
- TorchAudio for audio tasks
First, install LibTorch. For Homebrew, use:
brew install libtorchAdd this line to your application’s Gemfile:
gem 'torch-rb'It can take a few minutes to compile the extension.
Deep learning is significantly faster with a GPU. If you don’t have an NVIDIA GPU, we recommend using a cloud service. Paperspace has a great free plan.
We’ve put together a Docker image to make it easy to get started. On Paperspace, create a notebook with a custom container. Set the container name to:
ankane/ml-stack:torch-gpu
And leave the other fields in that section blank. Once the notebook is running, you can run the MNIST example.
This library follows the PyTorch API. There are a few changes to make it more Ruby-like:
- Methods that perform in-place modifications end with
!instead of_(add!instead ofadd_) - Methods that return booleans use
?instead ofis_(tensor?instead ofis_tensor) - Numo is used instead of NumPy (
x.numoinstead ofx.numpy())
You can follow PyTorch tutorials and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
Some examples below are from Deep Learning with PyTorch: A 60 Minutes Blitz
Create a tensor from a Ruby array
x = Torch.tensor([[1, 2, 3], [4, 5, 6]])Get the shape of a tensor
x.shapeThere are many functions to create tensors, like
a = Torch.rand(3)
b = Torch.zeros(2, 3)Each tensor has four properties
dtype- the data type -:uint8,:int8,:int16,:int32,:int64,:float32,float64, or:boollayout-:strided(dense) or:sparsedevice- the compute device, like CPU or GPUrequires_grad- whether or not to record gradients
You can specify properties when creating a tensor
Torch.rand(2, 3, dtype: :double, layout: :strided, device: "cpu", requires_grad: true)Create a tensor
x = Torch.tensor([10, 20, 30])Add
x + 5 # tensor([15, 25, 35])Subtract
x - 5 # tensor([5, 15, 25])Multiply
x * 5 # tensor([50, 100, 150])Divide
x / 5 # tensor([2, 4, 6])Get the remainder
x % 3 # tensor([1, 2, 0])Raise to a power
x**2 # tensor([100, 400, 900])Perform operations with other tensors
y = Torch.tensor([1, 2, 3])
x + y # tensor([11, 22, 33])Perform operations in-place
x.add!(5)
x # tensor([15, 25, 35])You can also specify an output tensor
result = Torch.empty(3)
Torch.add(x, y, out: result)
result # tensor([15, 25, 35])Convert a tensor to a Numo array
a = Torch.ones(5)
a.numoConvert a Numo array to a tensor
b = Numo::NArray.cast([1, 2, 3])
Torch.from_numo(b)Create a tensor with requires_grad: true
x = Torch.ones(2, 2, requires_grad: true)Perform operations
y = x + 2
z = y * y * 3
out = z.meanBackprop
out.backwardGet gradients
x.grad # tensor([[4.5, 4.5], [4.5, 4.5]])Stop autograd from tracking history
x.requires_grad # true
(x**2).requires_grad # true
Torch.no_grad do
(x**2).requires_grad # false
endDefine a neural network
class MyNet < Torch::NN::Module
def initialize
super
@conv1 = Torch::NN::Conv2d.new(1, 6, 3)
@conv2 = Torch::NN::Conv2d.new(6, 16, 3)
@fc1 = Torch::NN::Linear.new(16 * 6 * 6, 120)
@fc2 = Torch::NN::Linear.new(120, 84)
@fc3 = Torch::NN::Linear.new(84, 10)
end
def forward(x)
x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv1.call(x)), [2, 2])
x = Torch::NN::F.max_pool2d(Torch::NN::F.relu(@conv2.call(x)), 2)
x = x.view(-1, num_flat_features(x))
x = Torch::NN::F.relu(@fc1.call(x))
x = Torch::NN::F.relu(@fc2.call(x))
x = @fc3.call(x)
x
end
def num_flat_features(x)
size = x.size[1..-1]
num_features = 1
size.each do |s|
num_features *= s
end
num_features
end
endCreate an instance of it
net = MyNet.new
input = Torch.randn(1, 1, 32, 32)
net.call(input)Get trainable parameters
net.parametersZero the gradient buffers and backprop with random gradients
net.zero_grad
out.backward(Torch.randn(1, 10))Define a loss function
output = net.call(input)
target = Torch.randn(10)
target = target.view(1, -1)
criterion = Torch::NN::MSELoss.new
loss = criterion.call(output, target)Backprop
net.zero_grad
p net.conv1.bias.grad
loss.backward
p net.conv1.bias.gradUpdate the weights
learning_rate = 0.01
net.parameters.each do |f|
f.data.sub!(f.grad.data * learning_rate)
endUse an optimizer
optimizer = Torch::Optim::SGD.new(net.parameters, lr: 0.01)
optimizer.zero_grad
output = net.call(input)
loss = criterion.call(output, target)
loss.backward
optimizer.stepSave a model
Torch.save(net.state_dict, "net.pth")Load a model
net = MyNet.new
net.load_state_dict(Torch.load("net.pth"))
net.evalHere’s a list of functions to create tensors (descriptions from the C++ docs):
-
arangereturns a tensor with a sequence of integersTorch.arange(3) # tensor([0, 1, 2])
-
emptyreturns a tensor with uninitialized valuesTorch.empty(3) # tensor([7.0054e-45, 0.0000e+00, 0.0000e+00])
-
eyereturns an identity matrixTorch.eye(2) # tensor([[1, 0], [0, 1]])
-
fullreturns a tensor filled with a single valueTorch.full([3], 5) # tensor([5, 5, 5])
-
linspacereturns a tensor with values linearly spaced in some intervalTorch.linspace(0, 10, 5) # tensor([0, 5, 10])
-
logspacereturns a tensor with values logarithmically spaced in some intervalTorch.logspace(0, 10, 5) # tensor([1, 1e5, 1e10])
-
onesreturns a tensor filled with all onesTorch.ones(3) # tensor([1, 1, 1])
-
randreturns a tensor filled with values drawn from a uniform distribution on [0, 1)Torch.rand(3) # tensor([0.5444, 0.8799, 0.5571])
-
randintreturns a tensor with integers randomly drawn from an intervalTorch.randint(1, 10, [3]) # tensor([7, 6, 4])
-
randnreturns a tensor filled with values drawn from a unit normal distributionTorch.randn(3) # tensor([-0.7147, 0.6614, 1.1453])
-
randpermreturns a tensor filled with a random permutation of integers in some intervalTorch.randperm(3) # tensor([2, 0, 1])
-
zerosreturns a tensor filled with all zerosTorch.zeros(3) # tensor([0, 0, 0])
Here are a few full examples:
- Image classification with MNIST (日本語版)
- Collaborative filtering with MovieLens
- Sequence models and word embeddings
- Generative adversarial networks
Download LibTorch. For Linux, use the cxx11 ABI version. Then run:
bundle config build.torch-rb --with-torch-dir=/path/to/libtorchHere’s the list of compatible versions.
| Torch.rb | LibTorch |
|---|---|
| 0.3.0+ | 1.6.0 |
| 0.2.0-0.2.7 | 1.5.0-1.5.1 |
| 0.1.8 | 1.4.0 |
| 0.1.0-0.1.7 | 1.3.1 |
For Mac, you can use Homebrew.
brew install libtorchThen install the gem (no need for bundle config).
Deep learning is significantly faster on a GPU. Install CUDA and cuDNN and reinstall the gem.
Check if CUDA is available
Torch::CUDA.available?Move a neural network to a GPU
net.cudaThis library uses Rice to interface with LibTorch. Rice and earlier versions of rbenv don’t play nicely together. If you encounter an error during installation, upgrade ruby-build and reinstall your Ruby version.
brew upgrade ruby-build
rbenv install [version]View the changelog
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
git clone https://github.com/ankane/torch.rb.git
cd torch.rb
bundle install
bundle exec rake compile -- --with-torch-dir=/path/to/libtorch
bundle exec rake testYou can use this script to test on GPUs with the AWS Deep Learning Base AMI (Ubuntu 18.04).
Here are some good resources for contributors: